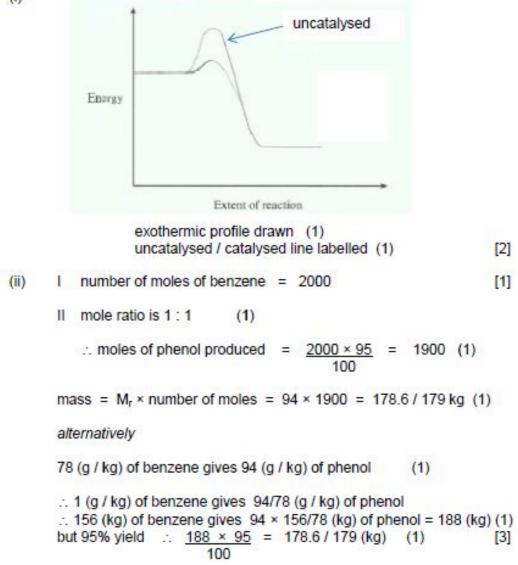
Mark Scheme - 2.3 The Wider Impact of Chemistry

(a)	Benefits: Stops fossil fuels from running out Reduces CO ₂ emissions / greenhouse emissions / global warming / effect of global warming Reduces SO ₂ emissions / acid rain There will be an investment in new technology		
	Depe Rene Relia Majo Oppo	endence on fossil fuel/Unlikely to meet current demand ewable energy currently more expensive ibility of supply from renewables r development in energy efficiency technologies required osition by vested interests	
	Cons	ideration and discussion of benefits/difficulties (1)	[4]
			mmar, clarity [1]
(b)	(i)	I As temperature increases yield decreases As pressure increases yield decreases	[1]
		II As temperature is increased, equilibrium moves to the Therefore forward reaction is exothermic (1) As pressure is increased, equilibrium moves to the left Therefore more gas moles in products (1) QWC The information is organised clearly and coher specialist vocabulary where appropriate	(1) [4]
	(ii)	If temperature is too low, then reaction is too slow (1) If temperature is too high, yield is too low (1) Compromise temperature – acceptable rate and yield (1) (Accept any two points)	[2]
	(iii)	Heterogenous catalyst	[1]
	(iv)	Lower temperatures could be used (1) Less energy consumption/increased yield (1) Equilibrium could be reached more quickly (1) (Accept any two points)	[2]
	(v)	curve (1)	
	E	nergy	[2]
		Extent of reaction	
	(vi)	$\Delta H = E_r - E_b$	[1]
			Total [19]
		(ii) (ii) (iv) (v) (v) (v)	 Stops fossil fuels fromrunning out Reduces CO₂ emissions / greenhouse emissions / global warming global warming Reduces SO₂ emissions / acid rain There will be an investment in new technology Difficulties: Dependence on fossil fuel/Unlikely to meet current demand Renewable energy currently more expensive Reliability of supply fromrenewables Major development in energy efficiency technologies required Opposition by vested interests (Maximum3 marks fromlist, but need examples of both) (3) Consideration and discussion of benefits/difficulties (1) QWC Legibility of text; accuracy of spelling, punctuation and grat of meaning (b) (i) 1 As temperature increases yield decreases As pressure increases yield decreases II As temperature is increased, equilibrium moves to the Therefore forward reaction is exothermic (1) As pressure increased, equilibrium moves to the left Therefore more gas moles in products (1) <i>QWC</i> The information is organised clearly and coher specialist vocabulary where appropriate (ii) If temperature is too low, then reaction is too slow (1) If temperature is too low, then reaction is too slow (1) <i>QWC</i> compromise temperature – acceptable rate and yield (1) (Accept any two points) (iii) Heterogenous catalyst (iv) Lower temperatures could be used (1) Less energy consumption/increased yield (1) Equilibrium could be reached more quickly (1) (Accept any two points) (v) Lower temperatures could be used (1) Less energy consumption/increased yield (2) Equilibrium could be reached more quickly (1) (Accept any two points)

(a)	(i)	Temperature: 298K / 25°C (1) Pressure: 1 atm / 101.325 kPa or 100 (1)	kPa [2]	
	(ii)	Hydrogen gas is an element in its standard state	[1]	
	(iii)	$\Delta H = \Delta H_{f} (C_{5}H_{12}) + 5 \Delta H_{f} (H_{2}O) - 5 \Delta H_{f} (CO) - 11 \Delta H_{f} (H_{2}) $ (1)		
		$\Delta H_{f} (C_{5}H_{12}) = -1049 - 5 (-286) + 5 (-111) $ (1)		
		$\Delta H_{f} (C_{5}H_{12}) = -174 \text{ kJ mol}^{-1}$ (1)	[3]	
(b)	(i)	Catalyst in different state to reactants	[1]	
	(ii)	Catalysts provide an alternative route (1) with a lower activation energy (1) [2]		
	(iii)	Lower temperature or less time so less energy needed / Can make alternative production method possible with sustainable starting materials or less waste products [1]		
	(iv)	At higher temperatures particles have more energy (1)		
		More collisions have energy above activation energy (1)		
		(Can obtain these two marks from correctly labelled Boltzmann er distribution plot with two temperature lines (1) and Activation ener (1))		
		Successful collisions occur more frequently (1) - 3 max	[3]	
		QWC: selection of a form and style of writing appropriate to purpo and to complexity of subject matter	se [1]	
(C)	(i)	No effect (1)		
		Same number of (gas) molecules on both sides of reaction (1)	[2]	
	(ii)	Lower yield of hydrogen (1)		
		Reaction shifts in endothermic direction to (try to counteract incre- in temperature) (1)	ase [2]	
	(iii)	No effect	[1]	

Total [19]


(a)	killing	ng marine life / killing trees		
(b)	(i) (ii) (iii)	either gas syringe or inverted burette attached to sealed vessel different surface area would affect rate of reaction concentration / volume / nature of acid (1)	[1] [1]	
(c)	(i)	temperature (1) increasing pressure will shift the reaction to side with fewer gas molecules (1)	[2]	
	(ii)	increasing yield of SO ₃ (1) – reason must be given I increasing temperature shifts equilibrium in endothermic direction (1)	[2]	
		as SO ₃ yield is decreased forward reaction must be exothermic (1) II increasing temperature increases energy of particles (1) more collisions have energy above activation energy (1) successful collisions occur more frequently (1)	[2]	
		can gain first two points from labelled Boltzmann distribution curve e.g. iron in production of ammonia or any valid example	[3] [1]	
(d)	(i) (ii)	atom economy = 100% any two points from: lower pressure used in B (1) methanol is a renewable starting material (1) higher atom economy in B or less waste in B (1)	[1]	
	(iii)	[ignore reference to cost] 2 max no effect on position of equilibrium	[2] [1]	
	. /	Total		

(a)	Oil is	s non-renewable / will run out	(1)	
	Cont	tribution of CO ₂ to global warming	(1)	
	Oil h	as other important uses	(1)	[2]
	(Max	kimum 2 marks)		
(b)	(i)	Power stations / fossil fuels used to g electricity needed to make H ₂ (1)	jenerate the	
		Resulting in CO ₂ formation (global wa	arming) / acid	l rain (1)
		Manufacture of car produces pollutio	n (1)	[2]
		(Maximum 2 marks)		
		QWC Legibility of text; accuracy of s and grammar, clarity of meaning	pelling, punc	tuation [1]
	(ii)	Disagree, no fuel is 100% safe / petrol can burn e	explosively	
		(Accept agree if valid reason given e being lost)	.g. in terms o	f lives [1]
(c)	(i)	Hydrogen since frequency is inverse wavelength / smaller wavelength	ly proportiona	al to [1]
	(ii)	Hydrogen since energy is proportion: greater frequency / E = hf	al to frequenc	cy / [1]
(d)	nucle	e greater shielding of <i>outer</i> electron (1) ear charge (1) / He has greater effective outer electron closer to nucleus (1)		
	THE U	- max 1 if no reference to outer electron	ron	[2]
	(Max	kimum 2 marks)		
(e)	(i)	²¹⁸ Po		[1]
	(ii)	Since radon is a gas / inhaled, α part in the lungs (which may cause cance		iven off [1]

Total [12]

(a) (i) They are both elements in their standard states. [1] (ii) $\Delta H = \Sigma \Delta H_f$ products $-\Sigma \Delta H_f$ reactants (1) = (-286 + 0) - (-368 + 0) $= -286 + 368 = (+)82 (kJ mol^{-1})$ (1) [2]

or by a cycle where correct cycle drawn (1) correct answer (1)

(iii) Look for at least four relevant positive points [4] e.g.

- the process uses a (heterogeneous) catalyst, which can easily be separated from the gaseous products (thus saving energy)
- the only other product of the reaction is gaseous nitrogen, which is non-toxic / safe / not a harmful product
- the process uses nitrogen(I) oxide which is used up, rather than being released into the atmosphere from the other process (and causing global warming)
- the process is exothermic and the heat produced can be used elsewhere
- a relatively moderate operating temperature reduces overall costs
- high atom economy

6. (a) $K \rightarrow 1s^22s^22p^63s^23p^64s^1$

Legibility of text; accuracy of spelling, punctuation and grammar; clarity of meaning QWC [1]

(1)

Total [14]

0.	(a)	There is one outer electron and the loss of this electron gives a stable potassium ion with a full outer shell/ ion more stable than the atom (1) [2]
	(b)	(i) $\Delta T = 4.8 ^{\circ}C$ (1)
		$\Delta H = -\frac{250 \times 4.2 \times 4.8}{0.125} = -40320 \text{ J mol}^{-1} / -40.3 \text{ kJ mol}^{-1} (2) [3]$
		 ✓ for negative sign ✓ correct value with relevant units
		 e.g. The volume used was not precise in measurement as the readings on a beaker are only approximate (1) The experiment was performed in a beaker and this was not insulated and beat was last to the surroundings. (1)
		and heat was lost to the surroundings (1) [2]
		there may be other acceptable answers here, for example based on slow dissolving
	(C)	(i) 0.050 [1]
		(ii) $(0.050 \times 24.0) = 1.20 (\text{dm}^3)$ [1]
		(iii) % v/v = $\frac{1.20 \times 0.001 \times 100}{2}$ (1) = 0.06 (1) [2]
	(d)	An increase in the concentration of (aqueous) carbon dioxide causes the position of equilibrium to move to the right. (1) This causes calcium carbonate to become aqueous calcium (and hydrogencarbonate) ions / dissolve (1)
		weakening shells / causing difficulty in formation of shells (1) [3]
		Organisation of information clearly and coherently; using specialist vocabulary where appropriate QWC [1]

Total [15]

(a)		Enthalpy change when one mole of a compound is formed from its (constituent) elements (1) in their standard states / under standard conditions (1)	[2]
(b)	(1)	$H_2 + \frac{1}{2}O_2 \rightarrow H_2O$	12.00
(b)	(i)	$\Pi_2 \neq \gamma_2 \cup_2 \rightarrow \Pi_2 \cup$	[1]
	(ii)	-242 = 436 + 248 - 2(O-H) (1) 2(O-H) = 926	
		$O_{-H} = 463 \text{ kJ mol}^{-1}$ (1)	[2]
(c)	(i)	I. Burning hydrogen will not produce CO ₂ (or SO ₂) as pollutants	[1]
		II. Hydrogen is very flammable, storing as MgH ₂ is safer / MgH ₂ is solid therefore volume occupied by given amount of hydrogen is less	
	(ii)	If the MgH ₂ is not kept dry, hydrogen will be formed and there could be a potential explosion	[1]
	(iii)	Moles MgH ₂ = $\frac{70000}{26.32}$ = 2659.6 (2660) (1)	
		Moles $H_2 = 5319.2$ (5320) (1)	
		Volume $H_2 = 1.28 \times 10^5 \text{ dm}^3$ (1)	[3]
(d)	(i)	An increase in temperature would decrease the yield and an increase in pressure would increase the yield	
	(ii)	Forward reaction is exothermic so equilibrium shifts to the left as temperature is increased (1)	
		More gaseous moles on the l.h.s. so equilibrium shifts to the right as pressure is increased (1)	[2]
(e)		Lower temperatures can be used(1)Energy costs saved(1)More product can be made in a given time (so more can be sold)	
		(1) Enable reactions to take place that would be impossible otherwise (1) Less fossil fuels burned to provide energy (so less CO ₂ formed)	
		(any 3 of above) (1)	[3]
		QWC Legibility of text; accuracy of spelling, punctuation and grammar, clarity of meaning	[1]

Total [18]